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dea that markets

Neely (2001) observes that because technical
trading strategies spend some time out of the
market, they should therefore have less volatile
returns than the buy and hold rule. Despite this
rather compelling argument, most of the literature
position technical trading strategy as generally
more riskier than the buy and hold strategy. This
view in the literature is supported bythe empirical

evidence where estimates of risk from buy and

hold strategy have been found to be less than the

estimated risk from trading rule strategies.
Second, despite the numerous documentations
in literature that discuss the heteroskesdastic
nature of financial asset distributions, the standard
deviation as a measure of risk is still being
captured as 2 stationery statistic throughout the
entire investment period.

Campbell et.al. (1997,p.481) argued that “it
is both logically inconsistent and statistically
inefficient touse volatility measures that arebased
on the assumptionof constant volatility oversome
period when the resulting series moves through
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time.” Because the standard deviation is
calculated as an average dispersion of all the
observations in the sample, the implied perception
in its traditional calculation is that it is stationery.
This perception allows its calculation to ignore
the chronological order of events (reflected in
contiguous price movements) which could be
important if it is used to estimaterisk of strategies
that are time varying nature.

Risk estimates should consider the periods
that actually matter to the investor.2 The periods
that matters are the short or long periods that
traders switch assets between long and short
positions by following trading signals. Ideally, risk
estimates should be able to chronologically track
down the relative risks for technical trading and
buy and hold strategies during these periods.
Unfortunately the standard deviation does not
consider the chronological order of occurrences
of price movements along the time line. The
standard deviation is calculated using values of
observations regardless of the chronological order
in which these values occurred. This can be a
source of bias if this statistic and other associated
risk estimates like the Sharpe ratio are used in
evaluating the efficacy trading rules strategjes.

The work of Dacoragna et. al.(2001) points
that the Sharpe ratio does not take account of
clustering of profits and losses and its instability
as the variance of an investment approaches zero.
They propose performance measures which
observe returns over different time intervals.

2 Some aspects of stock trading make technical
trading an obvious risky strategy compared to the
buy and hold strategy. The risk of shorting, the
risk of liquidity and the ‘bad signal’ risk. These can
be described as risks associated with technical
trading than buy and holding. The buy and hold
rule does not take these risks. These are what should
concern the technical trader for the risk of her
strategy relative to the buy and hold alternative.

The African Journal of Finance and Management

Dacorogna et. al. (2001) also observe that the
Sharpe ratio treats the variability of returns and
variability of losses in the same way despite the
fact that the variability of profits is not an issue of
concern to arisk aversive investor.

This article extends the literature on the
relationship between technical analysis and risk
adjustment by investigating whether technical
trading rules are useful on a risk-adjustment
basis in equity markets by adapting the technique
used by Dacorogna et. al (2001) to the UK
market. The article uses a multi-horizon
framework to capture the chronological order
of price movements where time intervals
(windows) are conceived to open and close on
the occurrence of trading signals and not fixed
as in Dacorogna et. al.’s (2001) case.

In this article risk estimates are explored in
the context of the investment strategies in the
stock markets. Sixty four stocks from the
London Stock Exchange (LSE) are examined.
The sample runs from 1st Jan, 1990 to 31st
December, 2004. The rules fail to significantly
and consistently outperform the buy and hold
strategy even after using the rolling standard
deviation as a measure of risk. Thus this article
extends results in previous studies which found
that return predictability and apparent trading
rule profits are consistent with market efficiency-

Therestof this article is organised as follows-
In the next section, the objectives and
significance of this article are described. In
section three these isa summary of previous
related works in this area, summarizing statistics
that have been attempted, their contributions and
pitfalls. In section four the conceptual framework
for this article is developed. Section 5 provides
the methodology including data and testaple
hypotheses. The results are presented in section
6 and section 7 concludes the article.
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Literature Review

The seriousness of appropriately adjusting forrisk
has been highlighted by several researchers
(Jensen, 1967; Kho, 1996; Ready; 2002, Allen
and Karjalainen, 1999; and Neely, 2001; 2003).
Recept studies on technical analysis that have
explained significant excess profits out of sample
as a compensation for risk premium includes
Cheng and Wong (1997), Lee et. Al (2001),
Kho (1996), Levich and Thomas (1993), and
Sweeney (1988).

_ The problem that documented measures of
"Sk_used to evaluate the efficacy of technical
trading rules do not reflect the real risk concerns
of a technical trader were first addressed by
Dacoragna, et al (2001). The RefT statistic of
Dacoragna, et. Al. (2001) captures changes in
investors utility and appetite for risk across the
sample period on the assumption that investor ’s
risk attitude can be altered by certain events.
Specifically the Reff recognizes that the
consequential impact of trading losses can be
higher to a moderate than to a wealthy investor.
H@nce the Reff assigns high risk aversion inthe
Windows with negative returns and alow one in
the windows with profits. The Xeffon the other
hand measures the utility that the trading strategy
8lves an excess return over a weighted average
Of return horizons.

252.100( & n
Xe = ——ln(—'—_’)
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The same weighting scheme used by
acorogna et, al, (2001) is used in this article
©xcept that the length of the window, 2t, in our
€ase are given by length of windows as
determineq by the occurrence of the buy and

1+c )_Z, i

The Conceptual Framework

The distribution of returns seldom represents
appropriately the actual chronological order of
price movements. Even in the case where there
are large drawdowns these are nevertheless
represented by price movements which evolve
in time to aminimum low. Thisis especially serious
when using quantities to assess the efficacy of
weak form efficiency of the Efficiency Market
Hypothesis (EMH) because the nisk inferred by
the statistics could be biased.

The intervals of time in which a trader takes a

position are governed by the generation of
alternating buy and sell signals. Thus each period
of time between two contiguous buy and sell
signals can be considered to have different
volatility estimates. The intuition availableis that
each of these fairly short horizons contain its own
return variability, a variability that is more
associated with the chronological order of price
movements within the window itself.
In order to capture the chronological order of
risk attracting events the rolling windows
technique is used to capture periods that represent
the order of price movements. Awindow, 7ti, is
defined as a period of time from a signal isissued
byatrading rule up to the next signal, fori =1,2,
" n-1, where n is the total number of trades
executed throughout the investment period.

sell signals. This innovation is intended to make
the risk csumate more realistic by affecting the
«dely recognised fact that equals in upward
and downward deviations do not inflict the

investor with equal risk.



80

A different length of time is also used to proxy
the maximum value the sequence of weights can
take. While accepting the arguments used by
Dacorogna et. al. (2001) for their choice of 90
days, we consider more appropriate to use the
days where the memory effect is still strong.
Thus, the weight is calculated as;

~ 1
W, = 2 @

)

where d is the number of days the autocorrelation
effect is still significant. The other variables are
as defined before.

Byexecuting a 10 days fixed moving average
rule, our shortest window has at least 10
observations. This is still too short for high
precision standard deviation. The number of
observation points is increased in each window
by following Muller et. al. (1993) who advices
theuse of overlapping intervals in computing the
standard deviation. Standard deviations from
each window are then annualised before
calculating the average for the entire sample.

Methodology

The sample runs for the period from 1st January
1990 to 31st December 2004. The sample
comprises of 64 stocks from the London Stock
Exchange where all data is obtained from the
Datastream database (See table 1 in the
Appendix). We implement a simple recursive
trading strategy is implemented to simulate real-
time speculation. Specifically, the investor is
assumed to trade each day using the MA rule
that is considered “best” using data up to the
previous day. Following Sullivan et. al. (1999),
the best MA rule is defined as the rule that has
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the highest cumulative returns over the past ninety
days.? These rolling ninety days means that the
evaluation is done every day. Ten trading rules
are used that were originally used by Brock et.
al. (1992).

Empirical Results
Summary Statistics

Table 2 presents a summary of statistics for the
average of the 64 individual stocks from a sample
of stocks from the FTSE 100 for the period from
January 1990 to December 2004. The summary
contains the distribution characteristics mean
standard deviation,skewness and kurtosis.
Return is defined as the natural logarithm of value
relatives, which is similar to the arithmetic return
for small values. The statistics indicates that there
is dependency in the return generating process.
The stock prices do not give indication of random
walk symptoms.

The Rolling Standard Deviation vs The
Traditional Standard Deviation

The test of the difference between the standard
deviation of retums from trading rules calculated
using the traditional entire sample approach and
the standard deviation determined using a norn-
overlapping rolling approach was analysed via
Table 3. Only 22.5% of results indicate there is
significant difference while 77.5% indicate
thatthere is no difference. Of the 22.5% only
11.72% indicate that the standard deviation of
returns from trading rules based on the rolling
approach is significantly less than standard

3 The ninety days is derived as an average of the
long moving averages for all the 26 trading rules
available to the trader
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deviation based on the traditional entire sample
applio.ach. The remaining 10.78% holds that the
tra@ntlopal approach gives standard deviation
which is significantly less than the rolling
aPPI‘O.ach. These results, however, are not
sufﬁcnent to reject the null of equality of the two
estimates of risk.

Does Technical Analysis Provide more
Stable Portfolios?

Itis also useful to test whether a technically
managed portfolio is more profitable than the
buy and hold portfolio after risk adjustment
because the volatility of returns from the former
are calmed by the switching to asset types of
lower volatility. The general position of literature,
as mention earlier, is that actively managed
Portfolios are more riskier than passively
man.aged portfolios. We, therefore, compare a
Passively managed buy and hold portfolio with
;? actively managed portfolio both adjusted by
Clrrespective rolling standard deviations.
the With the exception of only three trading rules,
tho average returns from the trading rules exceed
teStse from .ﬂl('i buy and hold strategy inall quels
Stu(:d. Tllls is consistent with most previous
T 18s including Hudson et. al. (1996) and
aylor (2000). 1t was noted by Hudson et. al.
5111296), that reporting on averages can distort
true picture when examining the
E_:Ff:onnan% ofindividual stocks or individual
Ou?u}g rules. Results indicate that only 76 coupts
the Ob 460 models have trading rules exceeding
Sion: uy and hold strategy at 5 % level 'of
SNificant, This is only about 16% of supertor
I;z:fofmance for trading rules. It is a weak
Stancome for the trading rules even when the
ap dard deviation is calculated using the rolling
Proach,

Effects in Evaluating Profitability and
Market Efficiency

Table 4 gives results of test of predictability,
which also implies the information value of
technical trading rules. The test is used to obtain
evidence on the efficiency of therolling approach
standard deviation in testing whether conditioning
on information contained in past prices by using
trading rules is useful. This is done by comparing
the returns from the Buy days against the returns
from Sell days. The test statistic, t, is calculated

using the formula;

S

5 N
Sp_ 4 Ss
n, n,

where 7, and 7, are the average returns frombuy
and sell days respectively. s, and 552 are the
variances of returns from Buy and Sell days
respectively, while 7, and n, are the number
days in long and short positions respectively.
The results indicate that the stocks were in
long positions for more days (anaverage of 1596
days) than they were in short positions (average
of 1518 days). The difference in the average
returns from Buy days and the average returns
from Sell days can give evidence about when
the two returns are not equal (Taylor, 2000).
Trading rules can uncover ev_idence of
predictability of the price process if qxpected
returns depend on Buy/Sell information. The
average Buy returns are positive but some Sell
returns are negative and overall the average sell
returns (5.75% annually) are less than the Buy
returns (25.5% annualized). This unadjusted
result implies the presence of information in past
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prices. These results are consistent with Taylor
(2000) who also found the past prices of FTSE
100 stocks to have information before risk
adjustments are considered. To evaluate market
efficiency, the value of this information has to be
analysed in thépresence of transaction cost and
risk. Taylor (2000) observes that:
Significant differences between average
returns on Buy days and Sell days are
only evidence against market efficiency
if transaction costs are sufficiently low
and special assumptions can be made
about risk. A standard assumption made
here and in related literature, e.g.
Sweeney (1986), is that the risk from
holding stock is the same on Buy days
as on Sell days. There is no escaping the
possibility that there is a time varying
risk premium that the trading rules
trackin such a way that Buy days have
a higher average risk premium than Sel]
days Taylor (2000) pp. 57-58.

Results on the Buy/Sell risk differences in table
5 show that the returns from Buy days are less
volatile (average of 1.593 % per day) than the
returns from Sell days (average of 1.673 % per
day). The Buy/Sell return series that we have
created by concatenating all daily Buy returns
into a Buy series, and the same for Sell days,
show that out of the 10 trading rules tested the
average standard deviation of Buy returns from
only 2 trading rules [(1, 150, 0) and (1, 5, 0)] are
found larger than those from Sell returns. At the
same time the Buy average returns exceed the
Sell average return significantly.

Of'the 640 models tested, 292 reject the null
ofnodifference between the two, giving evidence
that Buy days have larger returns than Sell days.
This is against only 40 models which giveevidence
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of returns from Sell days significantly exceeding
those from Buy days. This contradicts the implicit
assumption of equality of the volatility of the refurns
fromBuy days and those from Sell days in previous
studies. These results also give evidence against
Taylor’s (2000) proposition above that there is
atime varying risk premium that the trading rules
track ina such a way that Buy days have a higher
averagerisk premium than Sell days.

Risk Adjustment Using the Xeff statistic

Table 5 reports about testing excess profits from
trading rules after adjusting using a risk quantity.
“Xeff ™ is the Dacarogna et. al.’s (2001) test
statistic forrisk adjusted trading rule returns. It is
calculated by considering and quantifying the risk
viaaconstant risk aversion factor. A positive Xeff
implies that there still remains some profits from
trading rules even after deducting transaction costs
and risk. Results show that only one rule (5, 150,
0) give an average positive Xeff. But even this
positive Xeffis not significant at the 5% level. The
rest of the returns are negative.

Conclusions

On the overall, the results indicate that the
standard deviation for trading rules returns
computed using the rolling approach is lower than
when the statistic is calculated using traditional
entire sample approach. The rolling approach,
therefore, captures the stability in the portfolio
returns that is a direct consequence of using 2
dynamic strategy. When these lower standard
deviations are applied to the returns from
technical trading rules we are able to conclude
that the way the standard deviation is computed
can affect the analysis of trading rules performarce
in terms of the Sharpe ratio. .
Our second conclusion regards the compar1son
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oftrading rules performance and the buy and hold
strategy when the rolling standard deviation is
applied in adjusting for risk. Despite the above
gon_c]‘_‘Sl({n that the rolling approach standard
eviation is less than the traditional entire sample
Stand"clrd deviation, this approach, however, does
Not give strong indications that trading rules are
more profitable than the buy and hold strategy.
Negegazrding the test statistic Xeff, consistent with
not ¥ (2001 )-We f'lr}d that the use of Xeff does
give sufficient evidence to rationalize apparent
profits trading rules. All the results from 10 trading
rules averages except one, give anegative Xeff.
(?H the difference between performances of
gz;lg;g mles (?urin g Buy days against Sel.l days,
d dings give strong evidence supporting the
€a that more profits can be obtained from
conditioning from past prices. The rolling
Stanqard deviation was able to capture the order
of price movements, However when the overall
::tums from trading rules is compared with the
tums from the Buy and Hold strategy, the Buy
and Hold strategy is more superior.

Therefore we can not conclude categorically
that risk from active trading is lower than from
buy and hold strategy. Nevertheless, we are able
to conclude that the use of rolling windows in
estimating risk results in risk figures that are lower
than risks estimated from traditional standard
deviations. Amore general conclusion out of the
above conclusions is that there is no enough
evidence to reject thenull of themarket isefficient
for the FTSE 100 segment of the London Stock
Exchange.

In this article we have attempted to track the
chronological movement of prices in order to
model appropriately the risk that is relevant for
technical trading. We havealso quantified the risk -
using a technique suggested by Dacorogna et.al
(2001). While this studyhas dealt with the aspect
of profit or loss clusters, it can still be advanced
by consideringthe fact that volatilityoflosses gives
higher risk to an investor than the volatility of
profits. The literature on Lower Partial Moments
(LPM) provide excellent connectionbetweenrisk
and performance of investment strategies.
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Appendix

Table 1: List of stocks of the 66 FTSE 100 of the London Stock Exchange for the period January 1990 to
December 2004 included in the sample

1 ABBEY NATIONAL 33 JOHNSON MATTHEY
2 ALLIED DOMECQ 34 KINGFISHER

3 AMERSHAM 35 LAND SECURITIES

4 AMVESCAP 36 LEGAL & GENERAL

5 ASSD.BRIT.FOODS 37 MARKS & SPENCER GROUP
6 AVIVA 38 PEARSON

7 BAA 39 PROVIDENT FINL.

8 BAE SYSTEMS 40 PRUDENTIAL

9 BARCLAYS 41 RECKITT BENCKISER
10 BG GROUP 42 REED ELSEVIER

11 BOC GROUP 43 RENTOKIL INITIAL

12 BOOTS GROUP 44 REUTERS GP

13 BP 45 REXAM

14 BRIT.AMERICAN TOBACCO 46 RIO TINTO

15 BRITISH LAND 47 ROLLS-ROYCE GROUP
16 BT GROUP 48 RYL.BK.OF SCTL

17 BUNZL 49 SAFEWAY (UK)DEAD -
18 CABLE & WIRELESS 50 SAGE GROUP

19 CADBURY SCHWEPPES 51 SAINSBURY (J)

20 DAILY MAIL ‘A’ 52 SCHRODERS

21 DIAGEO 53 SCHRODERS NV

22 DIXONS GP. 54 SCOT.& NEWCASTLE
23 EMAP 55 SHELL TRANSPORT & TRDG.
24 EXEL 56 SMITH & NEPHEW

25 FOREIGN & COLONIAL 57 SMITHS GROUP

26 GKN 58 STD.CHARTERED

27 GLAXOSMITHKLINE 59 TESCO

28 ITvV 60 | TOMKINS

29 GUS 61 UNILEVER (UK)

30 HANSON 62 VODAFONE GROUP
31 HILTON GROUP 63 WHITBREAD

32 IMP.CHM.INDS. 64 WPP GROUP
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Table 3: Comparative analysis of traditional and the rolling approaches to calculating risk from technical
trading rules for the stocks of the FTSE 100 of the London Stock Exchange for the period January
1990 to December 2004.
“rule” is the trading rule applied, while ?tr and ?rol are the annualized standard deviations of returns
from technical trading calculated using the traditional method and rolling approach respectively.
Columns 4 and 5 contain counts of values t from 64 stocks to which each rule was applied that

rejects the null of no difference between the two standard deviations.

rule otr oro t>19 t<1.96 Rule Sharpe Sharpe
% % Retun  (otr) (orol)
%
1,150,0 19290 16.444 3 4 25560  1.325 1.554
1,50,0 22927 19.448 6 0 25296  1.103 1.301
1,200,0 22452 19.764 14 0 17.784  0.792 0.900
5,150,0 23.085 19.290 8 23 26352  1.142 1.366
1,50,0.01 28.777 29.384 1 10 20712 0.720 0.693
1,20,0 32730  29.251 7 4 15912 0.486 0.544
1,100 24508 24.191 16 9 30.600  1.249 1.265
1,150,001 16444 12.965 8 3 29.784  1.811 2.297
1,50 18974  14.863 9 6 15552 0.820 1.046
1,15,0 19.764 13.282 13 7 6.744  0.341 0.508
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