Mashaushi, K.R.S.: Why Software Engineers are Reluctant to Use Structured Methods 37

WHY SOFTWARE ENGINEERS ARE RELUCTANT TO USE
STRUCTURED METHODS

Mashaushi K.R.S.

Abstract; This paper looks into the reasons for an apparent boycott of theoretically proven structured techniques
and methodologies by most developers. It begins by discussing the fact that when a methodology for developing
software contradicts with the way human brains solves problems, the result is stress and thence burnout to
the software engineer. Points that explain the boycott are identified and explained. The paper then proposes

further study considerations needed to improve the use of structured tools.

INTRODUCTION

There is evidence that many software developers
do not like very structured tools for developing
softwares. One indication of this is the massive
use of prototyping techniques. Many of today’s
rapid-prototyping projects have completely
abandoned traditional software engineerin
methods,diagramming techniques, an
methodologies and have decide to plunge
directly into Visual Basic, for example, to provide
the user with a demonstrable prototype as soon
as possible. For some environments this may be
acceptable. For example for small and medium
size client/server systems. But for large-scale
systems, we still must use the more conventional
a Froach to software engineering. We must be
able to answer questions like these: (a) whatis it
that the user wanted us to do? (b) Does this
system implement those requirements’ (c) Ifwe
changed the priorities of various requirements,
how do we just keep track of them? e
argument that structured software
methodologies are not liked, is provoked by
evidence of their minimal use despite a perceive
Importance of their underlying concepts (TeSCf}»
et al.1995), Table one summarizes Tesch's
findings on the attitudes of Information Systems
(IS) professionals in using methodologies an
CASE tools.

The Problems of Organization of Thoughts

The process of cognizing is one of the complex
Phenomenon whose theoretical explanations
about its nature are still welcome. The questions
are: What exactly happens during this process?

at controls it? SucE questions are pertinent
to this work where we examine the element ©
cognitive restrictions on contemporary an
exiting structured software engineerng
methodologies.

Mental and Conceptual Models

Alistair Sutcliffe (1988) discusses the concept
of the schemata in describing working of the
human brain. He defines it in terms of the
memory processing model. In this model the
lhuman memory comes in two varicties. Short-
term working memory and long-term
permanent storage. The information-processing
model is used to place memory in the perspective
of perception and cognition.

According to the model, each perceptual
sense has a processor and associated short-term
memory. The memory form the input and
output buffers of the human system, storing
abstract short-term visual and audio images and
other captured information. Each memory is
also associated with a sensory processor. The
sensory processors analyse the contents of their
memories and pass the resulting information to
the cognitive processor for identification of the
sensory input. Meaning from an input is
generated when information in the input short-
term memories is passed on to the central
cognitive short-term memory for interpretation.
The cognitive processor is thought to be
responsible for object identification and
manipulation. This is effected by matching the
incoming information with past experience and
then attaching semantic meaning to the image

ound.

. S'l'his description of the human thinking
does not provide us with a reasonable
nt without considering another view of
de the brain: mental and
Fischer (1991) summaries

process
argume ut ¢
what happens inst
conceptual models.
mental models thus:

The user's model of a complex system is a
cognitive construct that describes a user’s
understanding of a particular content domain in

38 The African Journal of Finance and Management Vol.8 No. 1

the world. These modelsare formed by
experience, self-exploration, training,
instruction, observation, and accidental
encounters.

The mental models may not be accurate, thatis
to say it may not be a good representation (copy,
abstraction, subset, or summary) of the
conceptual model used to design the system or
the system itself. Norman (1983) describes the

difference between the conceptual and mental
models:

Conceptual models are devised as tools for the
understanding or teaching of physical systems.
Mental models are what people really have in
their heads and what guides tﬁeir use of things.
Ideally, there ought to be a direct and simple
relationship between the conceptual and mental

model. All too often, however, this is not the
case.

The mechanics of the human brain as presented
by Sutcliffe (1988) and Norman(1983) above can
now be used to examine why software engineers
are not happy with structured methods,
Software engineers interpret and predict the
results of using a methodology by using their
mental model of it. The content and format of a
mental model can not be discovered by simply
asking software engineers how they view or
understand a methodology to work. The verbal

Tablel: Professionals’ attitudes regarding tools

Agree (%)

Questions regarding

Strongly
tools

Moderately

Traditonal 9.7 17.1
3.88

design

methodologics

fail to provide

a systematic

approach to

the design

process

Computer aids 4 4.7
including tools

improve design

Quality

Structure chart 1 2.4
1s an effective

programme

representation

Average scores comm
slightly disagree =

Slightly

1.1

4.3

12.4

Both of the above models (Sutcliffe’s (1988)
and Norman's (1983) models of the l_\uman brain
operation) indicate that human m'formactllc;l::
processing involves matching of the input dat
or information with what is in the long term
memory. This is done in the cognitive

TOCESSOr.
! The cognitive processor retrieves data and
patterns of data from the !ong term mﬁmom
During this process of matching, also \ nol\o
as thinking or reasoning, humans mehay;
heuristics in getting a solution. This means [hcr
human reasoning is not strictly _loglcal, 'r’a[st !
itis a process of making comparisons :«lgmer:“a(
series of propositions which make up a m
model.)

Heuristic reasoning requires coélsfldirf‘atl'ﬁ:
efforts. Comparison of facts gathere rl?oosing
environment also requires frcedor?l in Cn Here
pairs of object images for compan‘bo s;: s
we can identify two factors that can cau sue
in software engineering using struc
methods:

1. The process of comparing against a serle?
of proppositions making up the mental {?Cﬁfe
may become long. This happens 1 ay
model does not easily match with Lllw v ay
the methodology requires the prot emis -
be solved. This prolonged reasoning
source of stress. (Sutcliffe 1988)

Disagree (%)

Slightly Strongly

e
Moderately g\verag

core

15.2 31.3 15.7

4.60

46.0 17.5

23.9 4.60

40.2 20.1

. =3
puted with indicated weights, strongly agree =1; moderately agree =2; shghtly/ 2:89’;?)
4: moderately disagree = 5 strongly disagree =6. (Adapted from D.B. Tesch et a

Mashaushi, K.R.S.: Why Software Engineers are Reluctant to Use Structured Methods

2. Structured mechods limits the use of
Heuristics by software engineers. This
contradicts with something which is a
natural way of reasoning. This limitation
makes problem solving difficult
uninteresting. Sutcliffe (1988)points that
‘Mundane, non-stimulating tasks are likely
to cause user fatigue precisely because they
do not stimulate interest and hence do not
hold attention’ The result of this is fatigue.
This is why software engineering has been
identified to cause stress and hence burnout
among developers.

Figure1: Moderator effect of cognitive requirements on the
relationship between stressors and lack of Identication

lack of identication High cognitive
requirement
5
4
3 Low cognitive
requirement
2
1
1 2 3 4 5 6 1
Stressors

(Adapted from Brodbeck, Heinbokel and Stolte,
1994)

Stressor scores of software engineers have also
been reported by Rubin and Hernendes (1989)
as higher than those of other prof§551opa!so T ei
also reported that there is high intrinsic wor
motivation in software engineering professionals,
which make them prone to development o
stress if they work in stressful situations (Pines
and Arson, 1989). .

Brodbeck, (1994) indicates that cogmf“’el
requirements are among the elements of contro
at work. These cognitive controls were assesse
by asking the subjects to give percentages O
time spent in thinking (in contrast to perf'ormmg
routine work) The findings of Bordbeck's study
(figure 1) are adapted here in the following
discussion.

Following structured methodo!
subjecting the engineer to certal

ogies means
n cog nitive

39

corridors prescribed by the methodology or
technique itself. This is a very high degree of
control because it does not just direct thinking
but it goes further to define the pattern of
‘though ‘ during a ‘thinking session’. Yourdon
(1993) underscores the semantic effect of
graphical tools;

graphical tools used in essential modeling are
mainly of semantic nature, is butle, yet important
The communication grammar, in other words,
the graphical conventions, predetermines the way
of thinking about the problem (Yourdon, 1993).

For example in using Entity Relationship
Diagrams (ERDs) to model requirements the
analyst is forced to think in terms of ERDs. This
has two implications; It can produce stress
provoking environments in an already concluded
stressful profession. Second, it can demotivate
the analyst by denying her of challenging
assignments (because work is made more
clerical).

While high cognitive requirements in
working environments are expected to motivate
engineers, Brodbeck (1994) concluded that
software professionals with high cognitive
requirements revealed higher burnout scores if
the level of stressors was high, and low scores if
the level of stressors was lower than the case
for those with lower cognitive requirements.

However there was an unexplained variance
when Brodbeck analyzed his data of burnout
against the various elements that caused it. This
unexplained portion is associated/hypothesized
here as being attributable to ‘cognitive freedom’

User dissatisfaction causes burnout

On user satisfaction we define the professional
satisfaction in using a tool as resulting from the

following:

¢ Perceived success of implementation results

¢ Actual incorporation of design (frinciples in
the course of development; an

o The perceived “fit” between professionals’
natural problem solving process and the one
imposed by a methodology.

The third element which addresses the issue of
fit, seem to conform with our earlier discussion
on the human information processing. This lack
of fit that might exist, seem to bethe difference
between a software engineer’s mental model of
the a methodology and the conceptual model
of the methodology. This drift can increase with

40

the degree of control that is imposed by a
methodology. Control in a methodology is
manifested by rigidity steps or stages to be
followed, tools that can be used in modelling,
shapes, format and styles of notations.

However, because structured methods have
contributed very significantly in software
development, it is not proper to argue that these
methods are useless. So, software engineers may
be more confortable with structured methods at
a certain level of structuredness. On the basis of
this we develop the following hypotheses:

1. Because control (Rules and Procedures) at
work, elements of structuredness, have
positive correlation to burnout (Brodbeck
and Hainboke, 1994) it can hypothesized the
lack of cognitive freedom resurt(s) in burnout.

2. Software engineering is a field that is (or to
be fair, expected to be) challenging and
requiring high cognitive inputs. It can be
plausibly assumed that various platforms and
workbenches (Methods and CASE tools)
reduce personal accomplishment (Lack of
identification) see figure1). This is because
they reduce this highly respected profession
to a clerical, routine work. Hence we
hypothesize that, there is an optimum degree
thata methodology can be structured. As a
methodology becomes highly structured;

¢ It becomes less appealing to software
engineers

* Icbecomes less effective.

CONCLUSION

This discussion has led to the development of
hypotheses that need to be pursued by a more
experimental research. The ideal experiment
may utilize talk-aloud techniques to explore the
answers to the question. It is also the t%eling of
the author that there has not been sufficient
amount of behavioral studies on IS professionals
especially in as far as use of tecﬁnologies is
concerned.

On the basis of the suggestion of Tesch 1995,
that a consideration of issues of satisfaction may
lead to the development of more effect system

evelopment tools, the author stronily
is

encourages more research towards thi
dircction.

The African Journal of Finance and Management Vol.8 No. 1

REFERENCES
Brodbeck, EC; Hainbokel, T. and Sttolte, W. (1994)

“Stressor burnout relationship in sottware
development teams.” Journal of O_ccupanonal and
Organizational Psychology, Vol.76, iss. # 6, p. 321-
341

Tesch, D.B., Klein G.Sobol, M.G.1(1995)
“Information system professional attitudes to
development tools.” Journal of Systems and Software,
Vol.28 issue # 1, p. 1343-50

Maslach, (1982)) . .
“Understanding burnout; Definitional issues in
analyzing a complex phenomenon.” in W.S.Paine
(ed). Job Stress and Bumout: Research, Theory qnd
Intervention Perspectives p. 29-40 Beverly Hills,
CA:Sage

Stacy, W. and MacMillian], (1995)) o,
“Cognitive bias in software qu:meermg.8
Communications of the ACM, Vol.38. iss 6. p. 34-3

Phol, K (1994) .,)
“Three dimensions of requircments.” Information
Systems, Vol 19, iss. 6 p. 56 8

Leonard -Barton, D. and Deschamps, [. (198)
“Managerial influence in the implementation of new
technology.” Management Science, Vol.34, iss. # 4,
p. 1252-1265

Yourdon, E. (1993) ‘ "
Yourdon Systems Method - a Model Driven Approach.
Prentince Hall International, New York

Rubin, H.I. and Henarndes, E.F. (1988)

“Motivation and behaviours of software
professionals.” in E. Award (ed.), Proceeding of the
1988 ACM SIGCPR Conference. p. 62-71. New
York:

Pines, A.and Arson, E.(1988)

Career Bumnout: Causes and Cures. New Your: Frees
Press

Davis, G.B. (1982))
“Strategies for information requirements
determination.” IBM Systems Journal, Vol 21, Iss.
#12, p. 4-30

Land, . F and Somogyi, E. (1986)]

“Software engineering: the relationsh'lp between a
formal system and its environment.” Journal g
Information Technology, Vol | Iss. # 1, p. 246 - 4

Markus, L.M. (1984) . d
Information Systems in Organizations; Bugs an
Features. Pitman Marshfield.

Burns, lll.N. and Denis, A.R. (198[5) development
“Selecting the appropriate application deve
methodolgogy.“ l%‘:ztapBase. Vol 17, iss. # 1, p. 1924
29

Capper, L. (1985) L.
p'i‘)'l'l*le uge of analysis and design methodo!ogles in

the working environment: an experimenta
approach.” in Bemelmans (ed)7, p- 37-48

Fischer, G. (1991) _ lex
“The importance of models in making comg E
systems comprehensible.” in M.]. Tauber an -
Ackermann (eds), Mental models and .Humaft‘h
Computer Interaction 2. Amsterdam: Elsevier Nor
Holland

Mashaushi, K.R.S.: Why Software Engineers are Reluctant to Use Structured Methods 41

Sutcliffe A. (1988)
Human Computer Interface Design, MacMillan
Education LTD, London.

Norman, D. A. (1983)
“Some observations on mental models.” in D.
Gentner and A. L. Stevens (eds), Mental Models,
Hillsdale, Nj: Lawrance Erlbaum

